Azərbaycanca AzərbaycancaDeutsch Deutsch日本語 日本語Lietuvos Lietuvosසිංහල සිංහලTürkçe TürkçeУкраїнська УкраїнськаUnited State United State
Dəstək
www.wikimedia.az-az.nina.az
  • Vikipediya

n 0 an x c n a0 a1 x c a2 x c 2 an x c n displaystyle sum n 0 infty a n x c n a 0 a 1 x c a 2 x c 2 a n x c n sırasına c

Qüvvət sıraları

Qüvvət sıraları
www.wikimedia.az-az.nina.azhttps://www.wikimedia.az-az.nina.az

∑n=0∞an(x−c)n=a0+a1(x−c)+a2(x−c)2+...+an(x−c)n{\displaystyle \sum _{n=0}^{\infty }a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+...+a_{n}(x-c)^{n}}{\displaystyle \sum _{n=0}^{\infty }a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+...+a_{n}(x-c)^{n}}

sırasına c{\displaystyle c}{\displaystyle c} nöqtəsində qüvvət sırası deyilir. Burada an{\displaystyle a_{n}}{\displaystyle a_{n}} əmsalları ədədlərdir. Xüsusi halda c=0{\displaystyle c=0}{\displaystyle c=0} olarsa, onda ∑n=0∞anxn=a0+a1x+a2x2+⋯.{\displaystyle \sum _{n=0}^{\infty }a_{n}x^{n}=a_{0}+a_{1}x+a_{2}x^{2}+\cdots .}{\displaystyle \sum _{n=0}^{\infty }a_{n}x^{n}=a_{0}+a_{1}x+a_{2}x^{2}+\cdots .}Bu sıraya sıfır nöqtəsində qüvvət sırası deyilir.

ex=∑n=0∞xnn!=1+x+x22!+x33!+⋯,{\displaystyle e^{x}=\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}=1+x+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+\cdots ,}{\displaystyle e^{x}=\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}=1+x+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+\cdots ,}

sin⁡(x)=∑n=0∞(−1)nx2n+1(2n+1)!=x−x33!+x55!−x77!+⋯,{\displaystyle \sin(x)=\sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n+1}}{(2n+1)!}}=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots ,}{\displaystyle \sin(x)=\sum _{n=0}^{\infty }{\frac {(-1)^{n}x^{2n+1}}{(2n+1)!}}=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-{\frac {x^{7}}{7!}}+\cdots ,}

Toplama və Çıxma

f(x)=∑n=0∞an(x−c)n{\displaystyle f(x)=\sum _{n=0}^{\infty }a_{n}(x-c)^{n}}image

g(x)=∑n=0∞bn(x−c)n{\displaystyle g(x)=\sum _{n=0}^{\infty }b_{n}(x-c)^{n}}image

onda

f(x)±g(x)=∑n=0∞(an±bn)(x−c)n.{\displaystyle f(x)\pm g(x)=\sum _{n=0}^{\infty }(a_{n}\pm b_{n})(x-c)^{n}.}image

Hasil və Bölmə

f(x)g(x)=(∑n=0∞an(x−c)n)(∑n=0∞bn(x−c)n){\displaystyle f(x)g(x)=\left(\sum _{n=0}^{\infty }a_{n}(x-c)^{n}\right)\left(\sum _{n=0}^{\infty }b_{n}(x-c)^{n}\right)}image

=∑i=0∞∑j=0∞aibj(x−c)i+j{\displaystyle =\sum _{i=0}^{\infty }\sum _{j=0}^{\infty }a_{i}b_{j}(x-c)^{i+j}}image

=∑n=0∞(∑i=0naibn−i)(x−c)n.{\displaystyle =\sum _{n=0}^{\infty }\left(\sum _{i=0}^{n}a_{i}b_{n-i}\right)(x-c)^{n}.}image

f(x)g(x)=∑n=0∞an(x−c)n∑n=0∞bn(x−c)n=∑n=0∞dn(x−c)n{\displaystyle {f(x) \over g(x)}={\sum _{n=0}^{\infty }a_{n}(x-c)^{n} \over \sum _{n=0}^{\infty }b_{n}(x-c)^{n}}=\sum _{n=0}^{\infty }d_{n}(x-c)^{n}}image

Differensiallama və İnteqrallama

f′(x)=∑n=1∞ann(x−c)n−1=∑n=0∞an+1(n+1)(x−c)n{\displaystyle f^{\prime }(x)=\sum _{n=1}^{\infty }a_{n}n\left(x-c\right)^{n-1}=\sum _{n=0}^{\infty }a_{n+1}\left(n+1\right)\left(x-c\right)^{n}}image

∫f(x)dx=∑n=0∞an(x−c)n+1n+1+k=∑n=1∞an−1(x−c)nn+k.{\displaystyle \int f(x)\,dx=\sum _{n=0}^{\infty }{\frac {a_{n}\left(x-c\right)^{n+1}}{n+1}}+k=\sum _{n=1}^{\infty }{\frac {a_{n-1}\left(x-c\right)^{n}}{n}}+k.}image

wikipedia, oxu, kitab, kitabxana, axtar, tap, meqaleler, kitablar, oyrenmek, wiki, bilgi, tarix, tarixi, endir, indir, yukle, izlə, izle, mobil, telefon ucun, azeri, azəri, azerbaycanca, azərbaycanca, sayt, yüklə, pulsuz, pulsuz yüklə, haqqında, haqqinda, məlumat, melumat, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, şəkil, muisiqi, mahnı, kino, film, kitab, oyun, oyunlar, android, ios, apple, samsung, iphone, pc, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, web, computer, komputer

n 0 an x c n a0 a1 x c a2 x c 2 an x c n displaystyle sum n 0 infty a n x c n a 0 a 1 x c a 2 x c 2 a n x c n sirasina c displaystyle c noqtesinde quvvet sirasi deyilir Burada an displaystyle a n emsallari ededlerdir Xususi halda c 0 displaystyle c 0 olarsa onda n 0 anxn a0 a1x a2x2 displaystyle sum n 0 infty a n x n a 0 a 1 x a 2 x 2 cdots Bu siraya sifir noqtesinde quvvet sirasi deyilir ex n 0 xnn 1 x x22 x33 displaystyle e x sum n 0 infty frac x n n 1 x frac x 2 2 frac x 3 3 cdots sin x n 0 1 nx2n 1 2n 1 x x33 x55 x77 displaystyle sin x sum n 0 infty frac 1 n x 2n 1 2n 1 x frac x 3 3 frac x 5 5 frac x 7 7 cdots Toplama ve Cixmaf x n 0 an x c n displaystyle f x sum n 0 infty a n x c n g x n 0 bn x c n displaystyle g x sum n 0 infty b n x c n onda f x g x n 0 an bn x c n displaystyle f x pm g x sum n 0 infty a n pm b n x c n Hasil ve Bolmef x g x n 0 an x c n n 0 bn x c n displaystyle f x g x left sum n 0 infty a n x c n right left sum n 0 infty b n x c n right i 0 j 0 aibj x c i j displaystyle sum i 0 infty sum j 0 infty a i b j x c i j n 0 i 0naibn i x c n displaystyle sum n 0 infty left sum i 0 n a i b n i right x c n f x g x n 0 an x c n n 0 bn x c n n 0 dn x c n displaystyle f x over g x sum n 0 infty a n x c n over sum n 0 infty b n x c n sum n 0 infty d n x c n Differensiallama ve Inteqrallamaf x n 1 ann x c n 1 n 0 an 1 n 1 x c n displaystyle f prime x sum n 1 infty a n n left x c right n 1 sum n 0 infty a n 1 left n 1 right left x c right n f x dx n 0 an x c n 1n 1 k n 1 an 1 x c nn k displaystyle int f x dx sum n 0 infty frac a n left x c right n 1 n 1 k sum n 1 infty frac a n 1 left x c right n n k

Nəşr tarixi: September 19, 2024, 11:23 am
Ən çox oxunan
  • September 22, 2025

    Əfqan Muxtarlı

  • Avqust 22, 2025

    Əbədi əjdahalar

  • September 15, 2025

    Əbu Davud ət-Təyalisi

  • September 07, 2025

    Əbdürrəhman ibn Əvf

  • September 30, 2025

    Əbdürrəhman ibn Mehdi

Gündəlik
  • Şərqi Asiya

  • Arxipelaq

  • Hokkaydo (ada)

  • Məmlük sultanlarının siyahısı

  • Ağqoyunlular

  • Ceyn Qudoll

  • Rusiya–Ukrayna müharibəsi (2022–hal-hazırda)

  • 2025-ci ildə vəfat edənlərin siyahısı

  • Cabir İmanov

  • 1895

NiNa.Az - Studiya

  • Vikipediya

Bülletendə Qeydiyyat

E-poçt siyahımıza abunə olmaqla siz həmişə bizdən ən son xəbərləri alacaqsınız.
Əlaqədə olmaq
Bizimlə əlaqə
DMCA Sitemap Feeds
© 2019 nina.az - Bütün hüquqlar qorunur.
Müəllif hüququ: Dadaş Mammedov
Yuxarı