Azərbaycanca AzərbaycancaDeutsch DeutschLietuvos Lietuvosසිංහල සිංහලTürkçe TürkçeУкраїнська Українська
Dəstək
www.wikimedia.az-az.nina.az
  • Vikipediya

1 Qamma funksiyax gt 0 displaystyle x gt 0 olduqda Γ x 0 tx 1e tdt displaystyle Gamma x int limits 0 infty t x 1 e t dt

Eyler inteqralları

Eyler inteqralları
www.wikimedia.az-az.nina.azhttps://www.wikimedia.az-az.nina.az

1. Qamma-funksiya

x>0{\displaystyle x>0}image olduqda

Γ(x)=∫0+∞tx−1e−tdt{\displaystyle \Gamma (x)=\int \limits _{0}^{+\infty }t^{x-1}e^{-t}dt}image .

Qamma-funksiyasının əsas xassəsi

Γ(x+1)=xΓ(x){\displaystyle \Gamma (x+1)=x\Gamma (x)}image

düsturu ilə ifadə olunur. Əgər n{\displaystyle n}image natural ədəddirsə, onda

Γ(n)=(n−1)!;{\displaystyle \Gamma (n)=(n-1)!;}image Γ(n+12)=1×3...(2n−1)2nπ{\displaystyle \Gamma (n+{\tfrac {1}{2}})={\tfrac {1\times 3...(2n-1)}{2^{n}}}{\sqrt {\pi }}}image .

2. Tamamlama düsturu

x{\displaystyle x}image tam ədəddən fərqli olduqda

Γ(x)Γ(1−x)=πsin⁡πx{\displaystyle \Gamma (x)\Gamma (1-x)={\tfrac {\pi }{\sin \pi x}}}image .

Bu düstur arqumentin mənfi qiymətləri üçün qamma-funksiyasını təyin etməyə imkan verir.

3. Beta-funksiya

x>0{\displaystyle x>0}image və y>0{\displaystyle y>0}image olduqda

B(x,y)=∫01tx−1(1−t)y−1dt{\displaystyle \mathrm {B} (x,y)=\int \limits _{0}^{1}t^{x-1}(1-t)^{y-1}dt}image ,

B(x,y)=Γ(x)Γ(y)Γ(x+y){\displaystyle \mathrm {B} (x,y)={\tfrac {\Gamma (x)\Gamma (y)}{\Gamma (x+y)}}}image

düsturu dogrudur

wikipedia, oxu, kitab, kitabxana, axtar, tap, meqaleler, kitablar, oyrenmek, wiki, bilgi, tarix, tarixi, endir, indir, yukle, izlə, izle, mobil, telefon ucun, azeri, azəri, azerbaycanca, azərbaycanca, sayt, yüklə, pulsuz, pulsuz yüklə, haqqında, haqqinda, məlumat, melumat, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, şəkil, muisiqi, mahnı, kino, film, kitab, oyun, oyunlar, android, ios, apple, samsung, iphone, pc, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, web, computer, komputer

1 Qamma funksiyax gt 0 displaystyle x gt 0 olduqda G x 0 tx 1e tdt displaystyle Gamma x int limits 0 infty t x 1 e t dt Qamma funksiyasinin esas xassesi G x 1 xG x displaystyle Gamma x 1 x Gamma x dusturu ile ifade olunur Eger n displaystyle n natural ededdirse onda G n n 1 displaystyle Gamma n n 1 G n 12 1 3 2n 1 2np displaystyle Gamma n tfrac 1 2 tfrac 1 times 3 2n 1 2 n sqrt pi 2 Tamamlama dusturux displaystyle x tam ededden ferqli olduqda G x G 1 x psin px displaystyle Gamma x Gamma 1 x tfrac pi sin pi x Bu dustur arqumentin menfi qiymetleri ucun qamma funksiyasini teyin etmeye imkan verir 3 Beta funksiyax gt 0 displaystyle x gt 0 ve y gt 0 displaystyle y gt 0 olduqda B x y 01tx 1 1 t y 1dt displaystyle mathrm B x y int limits 0 1 t x 1 1 t y 1 dt B x y G x G y G x y displaystyle mathrm B x y tfrac Gamma x Gamma y Gamma x y dusturu dogrudur

Nəşr tarixi: İyun 22, 2024, 15:41 pm
Ən çox oxunan
  • Mart 11, 2025

    Cladochaeta candidissima

  • Mart 12, 2025

    Cladochaeta

  • May 01, 2025

    Cinsi təcavüz

  • İyul 10, 2025

    Cinsiyyət dəyişdirmə əməliyyatı

  • Fevral 17, 2025

    Cindar

Gündəlik
  • Ukrayna

  • Komsomol

  • Ukraynada elm

  • Müstəqil Dövlətlər Birliyi

  • Ukrayna qrivnası

  • İosif Qoslavski

  • Georgi Jukov

  • 10 iyul

  • İngiltərə vətəndaş müharibəsi

  • ABŞ

NiNa.Az - Studiya

  • Vikipediya

Bülletendə Qeydiyyat

E-poçt siyahımıza abunə olmaqla siz həmişə bizdən ən son xəbərləri alacaqsınız.
Əlaqədə olmaq
Bizimlə əlaqə
DMCA Sitemap Feeds
© 2019 nina.az - Bütün hüquqlar qorunur.
Müəllif hüququ: Dadaş Mammedov
Yuxarı