Azərbaycanca AzərbaycancaDeutsch DeutschLietuvos Lietuvosසිංහල සිංහලTürkçe TürkçeУкраїнська Українська
Dəstək
www.wikimedia.az-az.nina.az
  • Vikipediya

Muavr düsturu kompleks ədədlər üçün ifadə olunan z r cos φ isin φ displaystyle z r cos varphi i sin varphi düsturu iddia

Muavr düsturu

Muavr düsturu
www.wikimedia.az-az.nina.azhttps://www.wikimedia.az-az.nina.az

Muavr düsturu — kompleks ədədlər üçün ifadə olunan z=r(cos⁡φ+isin⁡φ) {\displaystyle z=r(\cos \varphi +i\sin \varphi )\ }{\displaystyle z=r(\cos \varphi +i\sin \varphi )\ } düsturu, iddia edir ki, ixtiyari n∈Z{\displaystyle n\in \mathbb {Z} }{\displaystyle n\in \mathbb {Z} } üçün olduqda Muavr düsturu aşağıdakı kimi olur:

zn=rn(cos⁡nφ+isin⁡nφ) {\displaystyle z^{n}=r^{n}(\cos n\varphi +i\sin n\varphi )\ }{\displaystyle z^{n}=r^{n}(\cos n\varphi +i\sin n\varphi )\ }.

İsbatı

Muavr düsturunu Eyler düsturu ilə eiφ=cos⁡φ+isin⁡φ {\displaystyle e^{i\varphi }=\cos \varphi +i\sin \varphi \ }image ifadə edib və qüvvət əməllərini (ea)b=eab{\displaystyle (e^{a})^{b}=e^{ab}\!}image yerini yetirib isbat etmək olar. Burada b — tam ədəddir.

Tətbiqi

Analoji düstur həmçinin kompleks ədədlərin sıfırdan fərqli n-ci köklərinin tapılmasında istifadə olunur:

Analiz etmək alınmadı (SVG (MathML brauzer əlavəsi vasitəsilə aktivləşdirilə bilər): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/az.wikipedia.org/v1/":): {\displaystyle z^{1/n}=[r(\cos (\varphi+2\pi k) +i\sin (\varphi+2\pi k))]^{1/n} = r^{1/n}\left(\cos \frac{\varphi+2\pi k}{n} +i\sin \frac{\varphi+2\pi k}{n}\right),}

k = 0, 1, …, n—1 olduqda.

Tarix

Bu düstur ilk dəfə XVIII əsrdə yaşamış fransız riyaziyyatçısı Abraham de Muavr tərəfindən kəşf edilmişdir və onun şərəfinə adlandırılmışdır.

İstinadlar

  1. Əgər b — natamam ədəddirsə, (ea)b{\displaystyle (e^{a})^{b}\!}image — çoxdəyişənli a və eab{\displaystyle e^{ab}\!}image funksiyalarının yalnız birinin qiymətini alacaq

wikipedia, oxu, kitab, kitabxana, axtar, tap, meqaleler, kitablar, oyrenmek, wiki, bilgi, tarix, tarixi, endir, indir, yukle, izlə, izle, mobil, telefon ucun, azeri, azəri, azerbaycanca, azərbaycanca, sayt, yüklə, pulsuz, pulsuz yüklə, haqqında, haqqinda, məlumat, melumat, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, şəkil, muisiqi, mahnı, kino, film, kitab, oyun, oyunlar, android, ios, apple, samsung, iphone, pc, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, web, computer, komputer

Muavr dusturu kompleks ededler ucun ifade olunan z r cos f isin f displaystyle z r cos varphi i sin varphi dusturu iddia edir ki ixtiyari n Z displaystyle n in mathbb Z ucun olduqda Muavr dusturu asagidaki kimi olur zn rn cos nf isin nf displaystyle z n r n cos n varphi i sin n varphi IsbatiMuavr dusturunu Eyler dusturu ile eif cos f isin f displaystyle e i varphi cos varphi i sin varphi ifade edib ve quvvet emellerini ea b eab displaystyle e a b e ab yerini yetirib isbat etmek olar Burada b tam ededdir TetbiqiAnaloji dustur hemcinin kompleks ededlerin sifirdan ferqli n ci koklerinin tapilmasinda istifade olunur Analiz etmek alinmadi SVG MathML brauzer elavesi vasitesile aktivlesdirile biler Invalid response Math extension cannot connect to Restbase from server http localhost 6011 az wikipedia org v1 displaystyle z 1 n r cos varphi 2 pi k i sin varphi 2 pi k 1 n r 1 n left cos frac varphi 2 pi k n i sin frac varphi 2 pi k n right k 0 1 n 1 olduqda TarixBu dustur ilk defe XVIII esrde yasamis fransiz riyaziyyatcisi Abraham de Muavr terefinden kesf edilmisdir ve onun serefine adlandirilmisdir IstinadlarEger b natamam ededdirse ea b displaystyle e a b coxdeyisenli a ve eab displaystyle e ab funksiyalarinin yalniz birinin qiymetini alacaq

Nəşr tarixi: İyun 23, 2024, 09:02 am
Ən çox oxunan
  • May 15, 2025

    Zərdüşt Şəfi

  • İyun 29, 2025

    Zər

  • Fevral 16, 2025

    Zəngəran

  • Mart 19, 2025

    Zənginləri yeyin

  • May 07, 2025

    Zəmanətli ödəmə

Gündəlik
  • Azərbaycanca Vikipediya

  • SSRİ

  • İlham Əliyevin xarici ölkələrə etdiyi səfərlərin siyahısı

  • Brayan Vilson

  • Nəsibə Hüseynova

  • Azərbaycan (tarixi ərazi)

  • 4 iyul

  • 1865

  • ABŞ

  • 4 iyul

NiNa.Az - Studiya

  • Vikipediya

Bülletendə Qeydiyyat

E-poçt siyahımıza abunə olmaqla siz həmişə bizdən ən son xəbərləri alacaqsınız.
Əlaqədə olmaq
Bizimlə əlaqə
DMCA Sitemap Feeds
© 2019 nina.az - Bütün hüquqlar qorunur.
Müəllif hüququ: Dadaş Mammedov
Yuxarı