Bu ifadələrdə,
standart normal ehtimal sıxlığı funksiyası,
müvafiq kumulativ paylama funksiyası (erf xəta funksiyasdır) və
Ouen funksiyasıdır.
Qeyri-müəyyən inteqrallar
Bu inteqrallarda n!! ikiqat faktorialdır: n cüt ədəd olduqda bu faktorialın qiyməti 2-dən n ə qədər olan bütün cüt ədədlərin hasilinə, n tək olduqda isə 1-dən n ə qədər olan bütün tək ədədlərin hasilinə bərabərdir. Əlavə olaraq qəbul edilir ki, 0 !! = (−1) !! = 1.
Müəyyən inteqrallar
İstinadlar
- Patel, Read, (1996) lists this integral above without the minus sign, which is an error. See calculation by WolframAlpha Arxivləşdirilib 2019-11-06 at the Wayback Machine
- Patel, Read, (1996) report this integral with error, see WolframAlpha Arxivləşdirilib 2019-11-06 at the Wayback Machine
- Patel, Read, (1996) report this integral incorrectly by omitting x from the integrand
- Patel, Jagdish K.; Read, Campbell B. Handbook of the normal distribution (2nd). CRC Press. 1996. ISBN .
- Owen, D. "A table of normal integrals". Communications in Statistics: Simulation and Computation. B9. 1980: 389–419.
wikipedia, oxu, kitab, kitabxana, axtar, tap, meqaleler, kitablar, oyrenmek, wiki, bilgi, tarix, tarixi, endir, indir, yukle, izlə, izle, mobil, telefon ucun, azeri, azəri, azerbaycanca, azərbaycanca, sayt, yüklə, pulsuz, pulsuz yüklə, haqqında, haqqinda, məlumat, melumat, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, şəkil, muisiqi, mahnı, kino, film, kitab, oyun, oyunlar, android, ios, apple, samsung, iphone, pc, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, web, computer, komputer
Bu ifadelerde ϕ x 12pe 12x2 displaystyle phi x frac 1 sqrt 2 pi e frac 1 2 x 2 standart normal ehtimal sixligi funksiyasi F x xϕ t dt 12 1 erf x2 displaystyle Phi x int infty x phi t dt frac 1 2 left 1 operatorname erf left frac x sqrt 2 right right muvafiq kumulativ paylama funksiyasi erfxeta funksiyasdir ve T h a ϕ h 0aϕ hx 1 x2dx displaystyle T h a phi h int 0 a frac phi hx 1 x 2 dx Ouen funksiyasidir Qeyri mueyyen inteqrallar ϕ x dx F x C displaystyle int phi x dx Phi x C xϕ x dx ϕ x C displaystyle int x phi x dx phi x C x2ϕ x dx F x xϕ x C displaystyle int x 2 phi x dx Phi x x phi x C x2k 1ϕ x dx ϕ x j 0k 2k 2j x2j C displaystyle int x 2k 1 phi x dx phi x sum j 0 k frac 2k 2j x 2j C x2k 2ϕ x dx ϕ x j 0k 2k 1 2j 1 x2j 1 2k 1 F x C displaystyle int x 2k 2 phi x dx phi x sum j 0 k frac 2k 1 2j 1 x 2j 1 2k 1 Phi x C Bu inteqrallarda n ikiqat faktorialdir n cut eded olduqda bu faktorialin qiymeti 2 den n e qeder olan butun cut ededlerin hasiline n tek olduqda ise 1 den n e qeder olan butun tek ededlerin hasiline beraberdir Elave olaraq qebul edilir ki 0 1 1 ϕ x 2dx 12pF x2 C displaystyle int phi x 2 dx frac 1 2 sqrt pi Phi left x sqrt 2 right C ϕ x ϕ a bx dx 1tϕ at F tx abt C t 1 b2 displaystyle int phi x phi a bx dx frac 1 t phi left frac a t right Phi left tx frac ab t right C qquad t sqrt 1 b 2 xϕ a bx dx 1b2 ϕ a bx aF a bx C displaystyle int x phi a bx dx frac 1 b 2 left phi a bx a Phi a bx right C x2ϕ a bx dx 1b3 a2 1 F a bx a bx ϕ a bx C displaystyle int x 2 phi a bx dx frac 1 b 3 left a 2 1 Phi a bx a bx phi a bx right C ϕ a bx ndx 1bn 2p n 1F n a bx C displaystyle int phi a bx n dx frac 1 b sqrt n 2 pi n 1 Phi left sqrt n a bx right C F a bx dx 1b a bx F a bx ϕ a bx C displaystyle int Phi a bx dx frac 1 b left a bx Phi a bx phi a bx right C xF a bx dx 12b2 b2x2 a2 1 F a bx bx a ϕ a bx C displaystyle int x Phi a bx dx frac 1 2b 2 left b 2 x 2 a 2 1 Phi a bx bx a phi a bx right C x2F a bx dx 13b3 b3x3 a3 3a F a bx b2x2 abx a2 2 ϕ a bx C displaystyle int x 2 Phi a bx dx frac 1 3b 3 left b 3 x 3 a 3 3a Phi a bx b 2 x 2 abx a 2 2 phi a bx right C xnF x dx 1n 1 xn 1 nxn 1 F x xnϕ x n n 1 xn 2F x dx C displaystyle int x n Phi x dx frac 1 n 1 left left x n 1 nx n 1 right Phi x x n phi x n n 1 int x n 2 Phi x dx right C xϕ x F a bx dx btϕ at F xt abt ϕ x F a bx C t 1 b2 displaystyle int x phi x Phi a bx dx frac b t phi left frac a t right Phi left xt frac ab t right phi x Phi a bx C qquad t sqrt 1 b 2 F x 2dx xF x 2 2F x ϕ x 1pF x2 C displaystyle int Phi x 2 dx x Phi x 2 2 Phi x phi x frac 1 sqrt pi Phi left x sqrt 2 right C ecxϕ bx ndx ec22nb2bn 2p n 1F b2xn cbn C b 0 n gt 0 displaystyle int e cx phi bx n dx frac e frac c 2 2nb 2 b sqrt n 2 pi n 1 Phi left frac b 2 xn c b sqrt n right C qquad b neq 0 n gt 0 Mueyyen inteqrallar x2ϕ x ndx 1n3 2p n 1 displaystyle int infty infty x 2 phi x n dx frac 1 sqrt n 3 2 pi n 1 0ϕ ax F bx dx 12p a p2 arctan b a displaystyle int infty 0 phi ax Phi bx dx frac 1 2 pi a left frac pi 2 arctan left frac b a right right 0 ϕ ax F bx dx 12p a p2 arctan b a displaystyle int 0 infty phi ax Phi bx dx frac 1 2 pi a left frac pi 2 arctan left frac b a right right 0 xϕ x F bx dx 122p 1 b1 b2 displaystyle int 0 infty x phi x Phi bx dx frac 1 2 sqrt 2 pi left 1 frac b sqrt 1 b 2 right 0 x2ϕ x F bx dx 14 12p b1 b2 arctan b displaystyle int 0 infty x 2 phi x Phi bx dx frac 1 4 frac 1 2 pi left frac b 1 b 2 arctan b right 0 xϕ x 2F x dx 14p3 displaystyle int 0 infty x phi x 2 Phi x dx frac 1 4 pi sqrt 3 0 F bx 2ϕ x dx 12p arctan b arctan 1 2b2 displaystyle int 0 infty Phi bx 2 phi x dx frac 1 2 pi left arctan b arctan sqrt 1 2b 2 right F a bx 2ϕ x dx F a1 b2 2T a1 b2 11 2b2 displaystyle int infty infty Phi a bx 2 phi x dx Phi left frac a sqrt 1 b 2 right 2T left frac a sqrt 1 b 2 frac 1 sqrt 1 2b 2 right xF a bx 2ϕ x dx 2b1 b2ϕ at F a1 b21 2b2 displaystyle int infty infty x Phi a bx 2 phi x dx frac 2b sqrt 1 b 2 phi left frac a t right Phi left frac a sqrt 1 b 2 sqrt 1 2b 2 right F bx 2ϕ x dx 1parctan 1 2b2 displaystyle int infty infty Phi bx 2 phi x dx frac 1 pi arctan sqrt 1 2b 2 xϕ x F bx dx xϕ x F bx 2dx b2p 1 b2 displaystyle int infty infty x phi x Phi bx dx int infty infty x phi x Phi bx 2 dx frac b sqrt 2 pi 1 b 2 F a bx ϕ x dx F a1 b2 displaystyle int infty infty Phi a bx phi x dx Phi left frac a sqrt 1 b 2 right xF a bx ϕ x dx btϕ at t 1 b2 displaystyle int infty infty x Phi a bx phi x dx frac b t phi left frac a t right qquad t sqrt 1 b 2 0 xF a bx ϕ x dx btϕ at F abt 12pF a t 1 b2 displaystyle int 0 infty x Phi a bx phi x dx frac b t phi left frac a t right Phi left frac ab t right frac 1 sqrt 2 pi Phi a qquad t sqrt 1 b 2 ln x2 1sϕ xs dx ln s2 g ln 2 ln s2 1 27036 displaystyle int infty infty ln x 2 frac 1 sigma phi left frac x sigma right dx ln sigma 2 gamma ln 2 approx ln sigma 2 1 27036 IstinadlarPatel Read 1996 lists this integral above without the minus sign which is an error See calculation by WolframAlpha Arxivlesdirilib 2019 11 06 at the Wayback Machine Patel Read 1996 report this integral with error see WolframAlpha Arxivlesdirilib 2019 11 06 at the Wayback Machine Patel Read 1996 report this integral incorrectly by omitting x from the integrand Patel Jagdish K Read Campbell B Handbook of the normal distribution 2nd CRC Press 1996 ISBN 0 8247 9342 0 Owen D A table of normal integrals Communications in Statistics Simulation and Computation B9 1980 389 419